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On the parallel transport of the Ricci curvatures
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Abstract

Geometrical characterizations are given for the tensor R · S, where S is the Ricci tensor of a (semi-)Riemannian manifold
(M, g) and R denotes the curvature operator acting on S as a derivation, and of the Ricci Tachibana tensor ∧g ·S, where the
natural metrical operator ∧g also acts as a derivation on S. As a combination, the Ricci curvatures associated with directions on
M , of which the isotropy determines that M is Einstein, are extended to the Ricci curvatures of Deszcz associated with directions
and planes on M , and of which the isotropy determines that M is Ricci pseudo-symmetric in the sense of Deszcz.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, the parallel transport of sectional curvatures K on a (semi-)Riemannian manifold (M, g) around
infinitesimal coordinate parallelograms was studied in [23]. There, amongst other things, new geometrical
interpretations of the (0, 6)-curvature tensor R · R on M were obtained, where the first R stands for the curvature
operator acting as a derivation on the second R which stands for the (0, 4)-curvature tensor of Riemann and
Christoffel, as well as of the (0, 6)-Tachibana tensor Q(g, R) := ∧g ·R, where the classical metrical endomorphism ∧g
also acts on the (0, 4)-curvature tensor R as a derivation. By comparison of these (0, 6)-tensors R·R and Q(g, R), a new
scalar valued Riemannian curvature invariant was determined on (M, g), the so-called double sectional curvature
or the sectional curvature of Deszcz, L(p, π, π), which depends on two tangent 2-planes π and π at any point p
of M . And, the manifolds (M, g) for which the sectional curvature of Deszcz is isotropic, i.e., does not depend
on the planes π and π at p, but remains a scalar valued function which at most depends only on the points of
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M , say L : M → R : p 7→ L(p), are the manifolds which are pseudo-symmetric in the sense of Deszcz (see
e.g. [13,22,31]). In particular, we point out that, for instance, the classical spacetimes, such as the Schwarzschild and
Friedman–Lemaı̂tre–Robertson–Walker models, are all pseudo-symmetric [11,17,21]. Further, the three-dimensional
Thurston geometries and the three-dimensional d’Atri spaces are models of pseudo-symmetric spaces of constant
type [24,25], i.e., pseudo-symmetric spaces for which the Riemann curvature L of Deszcz is constant: 0 (for the semi-
symmetric spaces), +1 (for the special linear group, the Heisenberg group and the special unitary group) and −1 (for
the Lie group Sol).

In the present article, we basically carry out a similar study for the (0, 2)-Ricci tensor S instead of the (0, 4)-
Riemann–Christoffel curvature tensor. New geometrical interpretations of the (0, 4)-tensor R · S and of the Ricci
Tachibana tensor Q(g, S) = ∧g ·S are given, in particular, thus characterizing the Ricci semi-symmetric spaces
(R · S = 0) and the Einstein spaces (S = λ g, λ ∈ R). Then the so-called Ricci curvature of Deszcz, L S(p, d, π), is
defined. This is a new scalar valued Riemannian invariant curvature function depending on a tangent direction d and
a tangent plane π at any point p of M . This curvature is isotropic, i.e., this L S(p, d, π) is actually a scalar valued
function on M a priori only depending on the points p of M , when the manifold M is Ricci pseudo-symmetric in the
sense of Deszcz. In [23], in the same way as one may make the step from locally flat spaces (R = 0, K = 0) to
the real space forms, i.e., to the spaces of constant sectional curvature K = c (=, >, <0), the step is made from the
semi-symmetric spaces of Szabó [29,30] (R · R = 0, L = 0) to the pseudo-symmetric spaces of Deszcz in terms of
the scalar valued curvature functions L = L(p) (it should be stressed that, for L , there is no equivalent version of the
lemma of Schur which holds for K ; see e.g. [13]). Similarly, in Section 3, we go from the Einstein spaces, i.e., the
spaces of constant Ricci curvatures, to the spaces of isotropic Ricci curvatures of Deszcz. At the end, some non-trivial
examples of these kinds of manifolds are given.

2. A geometrical interpretation of the tensor R · S

Let (M, g) be an n-dimensional Riemannian manifold with metric g. Denote the Levi-Civita connection by ∇ and
its related Riemann–Christoffel (1, 3)-curvature tensor by R. The endomorphisms V ∧g W and R(V,W ) of the Lie
algebra of vector fields X(M) of M are defined by(

V ∧g W
)

Z = g(W, Z)V − g(V, Z)W,

and

R(V,W )Z = ∇V ∇W Z − ∇W ∇V Z − ∇[V,W ] Z;

(here and in the following vectors will be systematically denoted by lower case letters, while vector fields will
be denoted by capital letters). As is well known, following Schouten [28], R(x, y)z measures the second-order
change of a vector z ∈ Tp M , p ∈ M ; namely after the parallel transport of z around an infinitesimal coordinate
parallelogram P cornered at p with sides of lengths 1x and 1y tangent to x and y at p, a vector z? ∈ Tp M is
obtained,

z? = z + [R(x, y)z]1x1y + O>2(1x,1y).

And a vector (x ∧g y)z can be geometrically interpreted as follows. Assume that x, y ∈ Tp M are orthonormal and
choose {e3, . . . , en} so that {x, y, e3, . . . , en} is an orthonormal basis of Tp M . Then z ∈ Tp M can be decomposed by
orthonormal expansion as

z = g(z, x)x + g(z, y)y +

n∑
i=3

g(z, ei )ei .

By rotating the projection of z onto the plane x ∧ y spanned by x and y over an infinitesimal angle ε, while keeping
the projection of z onto the (n − 2)-plane spanned by e3, . . . , en fixed, a new vector z̃ is obtained, namely,

z̃ = z + ε{g(z, y)x − g(z, x)y} + O(ε2).

Thus the vector (x ∧g y)z measures the first-order change of the vector z after such an infinitesimal rotation of z in
the plane x ∧ y at the point p [23]. Therefore, it seems natural to consider (x ∧g y)z as some kind of normalization
for R(x, y)z, which gives a new interpretation of the following classical definition.
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Definition 1. At any point p ∈ M , let π = x ∧ y be any plane tangent to M at p, spanned by any two of its vectors x
and y. Then, the real number

K (p, π) =
g(R(x, y)y, x)
g((x ∧g y)y, x)

only depends on the point p and the plane π , and is called the sectional curvature of M at p for the plane section π .

Putting G =
1
2 g ∧ g, where ∧ is the Nomizu–Kulkarni product of (0, 2)-forms, we have G(x, y, x, y) =

g((x ∧g y)x, y). The (0, 4)-curvature tensor R is related to the (1, 3)-curvature tensor by R(X, Y, Z ,W ) =

g(R(X, Y )Z ,W ). Thus we obtain the familiar expression

K (p, π) =
R(x, y, y, x)
G(x, y, y, x)

.

The Ricci tensor S is defined as the trace of the Riemann–Christoffel curvature tensor,

S(X, Y ) =

n∑
i=1

R(Ei , X, Y, Ei ),

with X, Y ∈ X(M) and {E1, E2, . . . , En} any orthonormal basis of X(M). At a point p ∈ M , let {e1, e2, . . . , en} be
an orthonormal basis of Tp M . The Ricci curvature in the direction of e1, Ric(e1), can then be written as

Ric(e1) =

n∑
j=2

K (p, e1 ∧ e j ).

Next we give a geometrical interpretation of the (0, 4)-tensor R · S, obtained by the action of the curvature operator
R(X, Y ) on the (0, 2)-symmetric Ricci tensor,

(R · S)(X1, X2; X, Y ) := (R(X, Y ) · S) (X1, X2)

= −S (R(X, Y )X1, X2)− S (X1, R(X, Y )X2) ,

where X1, X2, X, Y ∈ X(M). A Riemannian manifold is said to be Ricci semi-symmetric when R · S vanishes
identically, i.e., R · S = 0. Now, consider a vector v at any point p ∈ M and any coordinate parallelogram P
cornered at p with sides of lengths 1x and 1y tangent to the linearly independent vectors x and y at p. Then, by
parallel transport of v around P we obtain the vector v? = v + [R(x, y)v]1x1y + O>2(1x,1y), so that

Ric(v?) = Ric(v)− [(R · S)(v, v; x, y)]1x1y + O>2(1x,1y).

Theorem 2. Let P be any infinitesimal coordinate parallelogram cornered at a point p of a Riemannian manifold M
with sides of lengths1x and 1y, which are tangent to vectors x and y at p. Let v? be the vector obtained from v after
parallel transport along P . Then, in second-order approximation,

δPRic(v) = −(R · S)(v, v; x, y)1x1y,

i.e., the (0, 4)-tensor R · S of M measures the change in Ricci curvature at any point p for any vector v under parallel
transport of v around any infinitesimal coordinate parallelogram P cornered at p.

Corollary 3. A Riemannian manifold M is Ricci semi-symmetric if and only if its Ricci curvature function is invariant,
up to second order, under parallel transport of any vector v at any point p of M around any infinitesimal coordinate
parallelogram P cornered at p.

Every semi-symmetric manifold is Ricci semi-symmetric. The converse however is not true in general. After
Defever proved the existence of Ricci semi-symmetric, not semi-symmetric hypersurfaces in Euclidean spaces, an
explicit example was given by Abdalla and Dillen in [1]; a complete intrinsic classification of Ricci semi-symmetric
hypersurfaces of Euclidean space was presented by Mirzoyan in [27].

As can easily be seen, the tensor R · S has the following algebraic symmetry properties:

(R · S)(X1, X2; X, Y ) = (R · S)(X2, X1; X, Y ) = −(R · S)(X1, X2; Y, X).
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The simplest (0, 4)-tensor on an n-dimensional Riemannian manifold having the same symmetry properties as R · S
may well be the Ricci–Tachibana tensor Q(g, S) defined by

Q(g, S)(X1, X2; X, Y ) :=
(
(X ∧g Y ) · S

)
(X1, X2)

= −S
(
(X ∧g Y )X1, X2

)
− S

(
X1, (X ∧g Y )X2

)
.

Lemma 4. A Riemannian manifold (M, g) is Einstein if and only if Q(g, S) = 0.

Proof. If (M, g) is Einstein, i.e., if S = λ g, then it follows straightforwardly that Q(g, S) vanishes identically.
Assume, conversely, that Q(g, S)(X1, X2; X, Y ) = 0, for all X1, X2, X, Y ∈ X(M). Because M is Riemannian,
there exists a basis {E1, E2, . . . , En} which diagonalizes S, i.e., S(Ei , E j ) = λi g(Ei , E j ), i, j ∈ {1, . . . , n}, where
λ1, . . . , λn are the eigenfunctions of the Ricci tensor. Then, for i 6= j , Q(g, S)(Ei , E j ; Ei , E j ) = λ j − λi = 0, and
hence (M, g) is Einstein. �

Using the above geometrical interpretation of (x ∧g y)z, we now give a geometrical meaning to the components
Q(g, S)(v, v; x, y) of the Ricci–Tachibana tensor. Let {x, y, e3, . . . , en} be an orthonormal basis of Tp M and consider
a vector v ∈ Tp M . The vector ṽ is the vector obtained after an infinitesimal rotation of the projection of v in the plane
span{x, y} as before, namely

ṽ = v + ε(x ∧g y)v + O(ε2).

Comparing the Ricci curvatures Ric(v) and Ric(̃v) we find

Ric(̃v) = Ric(v)− εQ(g, S)(v, v; x, y)+ O(ε2).

The components Q(g, S)(v, v; x, y) thus measure the change of the Ricci curvature Ric(v) under an operation
involving infinitesimal rotations performed at a point p, without leaving this point, as described above. In contrast,
the components (R · S)(v, v; x, y) measure the change of Ricci curvature Ric(v) after a parallel translation of the
vector v in an infinitesimal neighborhood of the point p. It seems therefore natural to consider the components
Q(g, S)(v, v; x, y) as some kind of normalization for the components (R · S)(v, v; x, y). In analogy with Definition 1
we propose the following.

Definition 5. Let (M, g) be an n(≥ 3)-dimensional Riemannian manifold which is not Einstein. Let U be the set of
points where the Ricci–Tachibana tensor Q(g, S) is not identically zero, i.e., U = {x ∈ M | Q(g, S)x 6= 0}; assume
that M is not Einstein such that U 6= ∅. Then, at a point p ∈ U , a direction d, spanned by a vector v ∈ Tp M , is said
to be curvature dependent on a plane π = x ∧ y ⊂ Tp M if Q(g, S)(v, v; x, y) 6= 0 (which condition, of course, is
independent of the choice of basis {x, y} for π and of vector v which determines the direction d).

Definition 6. At a point p ∈ U , let d be a direction, spanned by a vector v, which is curvature dependent on a plane
π = x ∧ y. We define the Ricci curvature L S(p, d, π) of Deszcz of the direction d and the plane π as the scalar

L S(p, d, π) =
(R · S)(v, v; x, y)
Q(g, S)(v, v; x, y)

,

(which expression is independent of the choice of basis {x, y} for the plane π as well as of the vector v which
determines the direction d).

3. Properties of the Ricci curvature of Deszcz

We first give a geometrical interpretation of the Ricci curvature of Deszcz L S in terms of the parallelogramoı̈ds
constructed as follows by Levi-Civita [6,20,26]. Let u and v be any two independent tangent vectors at any point p
of M . Consider through p the geodesic α with tangent u and let q be the point on this geodesic at an infinitesimal
distance A from p. Denote by v? the vector obtained after parallel transport of v from p to q along α. Then, through
p and q consider the geodesics βp and βq which are tangent to v and v?, respectively. Fix on them the points p and q
at the same infinitesimal distance B from p and q respectively. The parallelogramoı̈d cornered at p with sides tangent
to u and v is then completed by the geodesic α through p and q. Let A′ be the geodesic distance between p and q.
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Levi-Civita then showed that, in first-order approximation, the sectional curvature of the plane π = u ∧ v can be
expressed as

K (p, π) =
A2

− A′2

A2 B2G(u, v, v, u)
, (1)

where G(u, v, v, u) = sin2(ψ), with ψ the angle between the vectors u and v.
Consider at p ∈ M an orthonormal basis {v = e1, e2, . . . , en} of Tp M and construct for every plane v ∧ e j the

squaroı̈d of Levi-Civita (i.e., the parallelogramoı̈d with equal sides A = B = ε). Let ε′j denote the length of the
completing geodesic, in each of these squaroı̈ds. The Ricci curvature Ric(v) can then, up to first approximation, be
expressed as

Ric(v) =

n∑
j=2

ε2
− ε′2j

ε4 .

Next consider at p a plane π = x ∧ y and parallel transport the frame {v, e2, . . . , en} around the infinitesimal
coordinate parallelogram formed by the tangent vectors x and y at p. Further, construct the 2(n − 1) squaroı̈ds
starting from the planes v ∧ e j and v? ∧ e?j ( j = 2, . . . , n), respectively, all with equal sides ε. In general, the lengths
of the closing geodesics, ε′j and ε?′j , will be different. More precisely, we find, up to second order with respect to the
sides 1x and 1y of the coordinate parallelogram, that

L S(p, v, π) =

n∑
j=2

(
ε?′2j − ε′2j

)
ε4 Q(g, S)(v, v; x, y)

.

Thus, the scalar L S(p, v, π) basically measures the difference of the sum of the lengths of the closing geodesics
of the 2(n − 1) squaroı̈ds constructed from v, which are related by parallel transport of their generating frame around
an infinitesimal parallelogram with tangent plane π at p.

Similar to the equivalence of information contained in the Riemann–Christoffel curvature tensor R on the one hand
and in the sectional curvatures K (p, π) on the other one, as was shown by Cartan [6], there is also an equivalence of
information contained in the curvature tensor R · S of any Riemannian manifold (M, g) and in the Ricci curvatures
L S(p, d, π) of Deszcz of directions d at p which are curvature dependent on planes π = x ∧ y at p, as shown in the
following.

Theorem 7. At any point p ∈ U ⊂ M, the tensor R · S is completely determined by the Ricci curvatures L S of Deszcz.

Proof. Assume there exists a (0, 4)-tensor W with the same algebraic symmetries as R · S and such that for every
vector v at p ∈ U which is curvature dependent on a plane π = x ∧ y at p,

(R · S)(v, v; x, y)
Q(g, S)(v, v; x, y)

=
W (v, v; x; y)

Q(g, S)(v, v; x, y)
.

Then, we have to prove that for all x1, x2, x3, x4 ∈ Tp M ,

(R · S)(x1, x2; x3, x4) = W (x1, x2; x3, x4).

Let T be the (0, 4)-tensor given by T = R · S − W . Obviously, T has the same algebraic symmetries as R · S and W
and so, for every pair of curvature-dependent vector v and plane π = x ∧ y,

T (v, v; x, y) = 0 . (2)

When a vector v is not curvature dependent with respect to a plane π , we have that Q(g, S)(v, v; x, y) = 0.
Because this is a polynomial in the components of v, x and y, the zero set does not contain any open subset (for
otherwise Q(g, S)p ≡ 0, which would be a contradiction with p ∈ U). So, we can choose series of tangent vectors
vn → v, xn → x and yn → y such that for any n, vn is curvature dependent on xn ∧ yn . Hence, for every n,
T (vn, vn; xn, yn) = 0, and thus also in the limit T (v, v; x, y) = 0. Thus (2) holds for all v, x, y ∈ Tp M . Using
polarization and the symmetry properties of R · S then completes the proof. �
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Corollary 8. The Ricci semi-symmetric spaces are characterized by the vanishing of their Ricci curvatures of Deszcz.

Definition 9. A Riemannian manifold M of dimension n (≥ 3) is said to be Ricci pseudo-symmetric in the sense of
Deszcz, at a point p ∈ U , if there exists a scalar L S(p) such that, at p,

R · S = L S(p) Q(g, S).

A Riemannian manifold M of dimension n (≥ 3) is called Ricci pseudo-symmetric in the sense of Deszcz if it is Ricci
pseudo-symmetric at all of its points.

Theorem 10. A Riemannian manifold M of dimension n (≥ 3) is Ricci pseudo-symmetric in the sense of Deszcz if
and only if at all of its points p ∈ U all the Ricci curvatures of Deszcz are the same, i.e., for all curvature-dependent
directions d with respect to planes π , L S(p, d, π) = L S(p).

Proof. If R · S = Ls(p) Q(g, S) at p, the statement is obvious. Conversely, assume that L S(p, v, π) = L S(p) for
any vector v curvature dependent on a plane π = x ∧ y. Then,

(R · S)(v, v; x, y) = L S(p) Q(g, S)(v, v; x, y).

The tensor T = R · S − L S(p) Q(g, S) has the same algebraic symmetries as R · S. For a vector v which is curvature
dependent on a plane π = x ∧ y, one has T (v, v; x, y) = 0. If both are not curvature dependent, an argument as in the
proof of Theorem 7 shows that T (x1, x1; x2, x3) = 0, for all x1, x2, x3 ∈ Tp M , from which follows the result. �

Remarks and comments 11. If (M, g) is pseudo-symmetric, i.e., there exists a function L R : M → R such that
R · R = L R Q(g, R), then the manifold (M, g) is automatically Ricci pseudo-symmetric and the Ricci curvature of
Deszcz L S is equal to the sectional curvature of Deszcz L R .

Whereas every pseudo-symmetric manifold thus automatically is Ricci pseudo-symmetric too, the converse is not
true. For instance, every warped product manifold M1 × f M2 of a one-dimensional manifold (M1, g1) and a non-
pseudo-symmetric (or say, generic) Einstein manifold (M2, g2) of dimension ≥ 3 is a non-pseudo-symmetric, Ricci
pseudo-symmetric manifold [13]. Further examples of Ricci pseudo-symmetric, non-pseudo-symmetric spaces with
in general non-constant curvature function L S were given, amongst others, in [16,18,19]. Concerning Ricci pseudo-
symmetric manifolds of constant Ricci curvature of Deszcz, we mention the following. In his work on isoparametric
hypersurfaces, Cartan specifically studied the compact minimal hypersurfaces Mn of spheres Sn+1(1), and among
them met hypersurfaces with principal curvatures −

√
3, 0 and

√
3, all of the same multiplicity, which are called the

Cartan hypersurfaces of spheres and which exist only when n = 3, 6, 12 and 24 [4,5]. For n = 3, such hypersurfaces
clearly are quasi-Einstein and hence pseudo-symmetric (see e.g. [2], also in connection with the pseudo-symmetry of
three-dimensional d’Atri spaces and the three-dimensional Thurston models which were mentioned before). However
for n = 6, 12 and 24, the Cartan hypersurfaces are non-pseudo-symmetric, Ricci pseudo-symmetric manifolds with
L S = 1. For some more information on various pseudo-symmetries of hypersurfaces, see also [12,14,15,31].

A short and light historical note 12. The notation S for the Ricci tensor of a Riemannian manifold seems to be
rather well chosen. Similarly to the second fundamental form of a submanifold usually being denoted by h, probably
since its first or metrical fundamental form is gravitationally often denoted by g, there may have been consideration
of writing S for the Ricci tensor of a Riemannian manifold and, incidentally, next writing τ for the scalar curvature
of this manifold, since its curvature tensor of Riemann and Christoffel is written as R. But there is also the following.
In his 1871 master thesis at the University of Kazan, entitled “On the characterization of three-dimensional systems”
(in Russian; a French sort of summary appeared in 1873 in the Bulletin des Sciences Mathématiques), Suvorov was
the first to explicitly undertake the evidently natural study of the extremal values of the sectional curvature function
K on a Riemannian manifold, albeit only for the easiest of the non-trivial situations, namely for the three-dimensional
case. In this case, of course, critical planes π for K correspond one-to-one to (their perpendicular) directions d,
and thus these critical curvatures K , called the principal curvatures by Ricci in 1899 in his “Societá dei XL — vol
XII” paper “On continuous groups of motions” (in Italian), correspond to the critical values of the Ricci curvatures,
or equivalently, to the eigenfunctions of the Ricci operator. The above observations were taken from L. Bianchi’s
“Lezioni di geometria differenziale”, vol 1 (section 162). In this connection, we would like to further observe that, in
our opinion, whereas direct and general studies on the geometry of Riemannian manifolds with respect to min K and
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max K are rare (see e.g. Berger’s panoramic view of Riemannian geometry [3]), B.Y. Chen’s recent idea of studying
min K and max K generally, but indirectly, as “incorporated” in his so-called δ-curvatures, δ(2) = τ − min K and
δ̂(2) = τ − max K , and via the isometric imbedding theorem of Nash, through the so-called general and optimal
Chen and related inequalities and corresponding “ideal” submanifolds, made it possible to obtain several new, general
and significant results of extrinsic and of intrinsic nature in this direction [7–10]. Whereas the more sophisticated
δ-curvatures δ(n1, n2, . . . , nk) and δ̂(n1, n2, . . . , nk) (ni ≥ 2, i ∈ {1, . . . , k}, k ∈ {1, . . . , n},

∑
i ni ≤ n) basically

can be seen as generalizations of Ricci curvatures for say “multiple” directions on arbitrary dimensional Riemannian
manifolds, the old master thesis of Suvorov looked at with hindsight, in the light of the new Chen curvatures, provided
the natural step from the extremal values of the sectional curvatures K of three-dimensional Riemannian manifolds to
the Ricci curvatures and the Ricci tensor S.
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